PACKT (406)
Text Book 교재용원서 (673)
컴퓨터공학 (822)
컴퓨터 일반도서 (560)
전기,전자공학 (715)
기계공학 (201)
재료공학 (34)
에너지공학 (65)
의용공학 (40)
생명과학 (229)
물리학 (427)
지구과학 (74)
천문학 (39)
수학 (103)
통계학 (46)
경영학 (42)
산업공학 (12)
사회복지학 (5)
심리학 (247)
교육학 (2)
화학 (5)
기타 (64)
특가할인도서 (택배비별도) (87)

> > 물리학 > 열 및 통계물리학

이미지를 클릭하시면 큰 이미지를 보실 수 있습니다.
Lie Groups and Lie Algebras - A Physicist's Perspective
출판사 : Oxford University Press
저 자 : Bincer
ISBN : 9780199662920
발행일 : 2012-12
도서종류 : 외국도서
발행언어 : 영어
페이지수 : 224
판매가격 : 69,000원
판매여부 : 재고확인요망
주문수량 : [+]수량을 1개 늘입니다 [-]수량을 1개 줄입니다

My Wish List 에 저장하기
   Lie Groups and Lie Algebras - A Physicist's Perspective 목차
1. Generalities
2. Lie Groups and Lie Algebras
3. Rotations: SO(3) an SU(2)
4. Representations of SU(2)
5. The so(n) Algebra and Clifford Numbers
6. Reality Properties of Spinors
7. Clebsch-Gordan Series for Spinors
8. The Center and Outer Automorphisms of Spin(n)
9. Composition Algebras
10. The Exceptional Group G2
11. Casimir Operators for Orthogonal Groups
12. Classical Groups
13. Unitary Groups
14. The Symmetric Group Sr and Young Tableaux
15. Reduction of SU(n) Tensors
16. Cartan Basis, Simple Roots and Fundamental Weights
17. Cartan Classification of Semisimple Algebras
18. Dynkin Diagrams
19. The Lorentz Group
   도서 상세설명   

Overview
This book is intended for graduate students in Physics. It starts with a discussion of angular momentum and rotations in terms of the orthogonal group in three dimensions and the unitary group in two dimensions and goes on to deal with these groups in any dimensions. All representations of su(2) are obtained and the Wigner-Eckart theorem is discussed. Casimir operators for the orthogonal and unitary groups are discussed. The exceptional group G2 is introduced as the group of automorphisms of octonions. The symmetric group is used to deal with representations of the unitary groups and the reduction of their Kronecker products. Following the presentation of Cartan's classification of semisimple algebras Dynkin diagrams are described. The book concludes with space-time groups - the Lorentz, Poincare and Liouville groups - and a derivation of the energy levels of the non-relativistic hydrogen atom in n space dimensions.

  교육용 보조자료   
작성된 교육용 보조자료가 없습니다.