본문 바로가기
장바구니0

5G Technology: 3GPP New Radio > 이동통신

도서간략정보

5G Technology: 3GPP New Radio
히트도서
판매가격 69,000원
저자 Harri Holma, Antti Toskala, Takehiro Nakamura
도서종류 외국도서
출판사 McGraw-Hill
발행언어 영어
발행일 2020
페이지수 536
ISBN 9781119236313|
배송비결제 주문시 결제
도서구매안내 온, 오프라인 서점에서 구매 하실 수 있습니다.

구매기능

  • 도서 정보

    도서 상세설명

    Overview

    A comprehensive guide to 5G technology, applications and potential for the future

    5G brings new technology solutions to the 5G mobile networks including new spectrum options, new antenna structures, new physical layer and protocols designs and new network architectures. 5G Technology: 3GPP New Radio is a comprehensive resource that offers explanations of 5G specifications, performance evaluations, aspects of device design, practical deployment considerations and illustrative examples from field experiences.

    With contributions from a panel of international experts on the topic, the book presents the main new technology components in 5G and describes the physical layer, radio protocols and network performance. The authors review the deployment aspects such as site density and transport network and explore the 5G performance aspects including data rates and coverage and latency. The book also contains illustrative examples of practical field measurement. In addition, the book includes the most recent developments in 4G LTE evolution and offers an outlook for the future of the evolution of 5G. This important book:

    • Offers an introduction to 5G technology and its applications
    • Contains contributions from international experts on the topic
    • Reviews the main technology components in 5G
    • Includes information on the optimisation of the Internet of things
    • Presents illustrative examples of practical field measurements

    Written for students and scientists interested in 5G technology, 5G Technology: 3GPP New Radio provides a clear understanding of the underlying 5G technology that promotes the opportunity to take full benefit of new capabilities.


    Table of Contents

    List of Contributors xvii

    Foreword xix

    Preface xxi

    Acknowledgment xxiii

    1 Introduction 1
    Harri Holma, Antti Toskala, Takehiro Nakamura, and Tommi Uitto

    1.1 Introduction 1

    1.2 5G Targets 3

    1.3 5G Technology Components 3

    1.4 5G Spectrum 4

    1.5 5G Capabilities 5

    1.6 5G Capacity Boost 7

    1.7 5G Standardization and Schedule 8

    1.8 5G Use Cases 9

    1.9 Evolution Path from LTE to 5G 10

    1.10 Mobile Data Traffic Growth 10

    1.11 Summary 11

    Reference 11

    2 5G Targets and Standardization 13
    Hiroyuki Atarashi, Mikio Iwamura, Satoshi Nagata, Takehiro Nakamura, and Antti Toskala

    2.1 Introduction 13

    2.2 ITU 13

    2.2.1 IMT Vision for 2020 and Beyond 14

    2.2.2 Standardization of IMT-2020 Radio Interface Technologies 15

    2.3 NGMN 17

    2.3.1 NGMN 5G Use Cases 18

    2.3.2 NGMN 5G Requirements 19

    2.3.3 NGMN 5G Architecture Design Principles 20

    2.3.4 Spectrum, Intellectual Property Rights (IPR), and Further Recommendations by NGMN 21

    2.4 3GPP Schedule and Phasing 22

    References 25

    3 Technology Components 27
    Harri Holma

    3.1 Introduction 27

    3.2 Spectrum Utilization 27

    3.2.1 Frequency Bands 27

    3.2.2 Bandwidth Options 29

    3.2.3 Spectrum Occupancy 29

    3.2.4 Control Channel Flexibility 30

    3.2.5 Dynamic Spectrum Sharing 31

    3.3 Beamforming 31

    3.4 Flexible Physical Layer and Protocols 33

    3.4.1 Flexible Numerology 33

    3.4.2 Short Transmission Time and Mini-slot 34

    3.4.3 Self-Contained Subframe 35

    3.4.4 Asynchronous HARQ 36

    3.4.5 Lean Carrier 37

    3.4.6 Adaptive Reference Signals 38

    3.4.7 Adaptive UE Specific Bandwidth 38

    3.4.8 Distributed MIMO 39

    3.4.9 Waveforms 39

    3.4.10 Channel Coding 41

    3.4.11 Pipeline Processing and Front-Loaded Reference Signals 41

    3.4.12 Connected Inactive State 41

    3.4.13 Grant-Free Access 43

    3.4.14 Cell Radius of 300 km 43

    3.5 Network Slicing 44

    3.6 Dual Connectivity with LTE 44

    3.7 Radio Cloud and Edge Computing 46

    3.8 Summary 47

    Reference 47

    4 Spectrum 49
    Harri Holma and Takehiro Nakamura

    4.1 Introduction 49

    4.2 Millimeter Wave Spectrum Above 20 GHz 52

    4.3 Mid-Band Spectrum at 3.3–5.0 GHz and at 2.6 GHz 55

    4.4 Low-Band Spectrum Below 3 GHz 58

    4.5 Unlicensed Band 59

    4.6 Shared Band 62

    4.7 3GPP Frequency Variants 64

    4.8 Summary 64

    References 64

    5 5G Architecture 67
    Antti Toskala and Miikka Poikselkä

    5.1 Introduction 67

    5.2 5G Architecture Options 67

    5.3 5G Core Network Architecture 70

    5.3.1 Access and Mobility Management Function 72

    5.3.2 Session Management Function 73

    5.3.3 User Plane Function 73

    5.3.4 Data Storage Architecture 73

    5.3.5 Policy Control Function 73

    5.3.6 Network Exposure Function 74

    5.3.7 Network Repository Function 74

    5.3.8 Network Slice Selection 74

    5.3.9 Non-3GPP Interworking Function 74

    5.3.10 Auxiliary 5G Core Functions 74

    5.4 5G RAN Architecture 75

    5.4.1 NG-Interface 78

    5.4.2 Xn-Interface 79

    5.4.3 E1-Interface 80

    5.4.4 F1-Interface 80

    5.5 Network Slicing 81

    5.5.1 Interworking with LTE 82

    5.6 Summary 85

    References 86

    6 5G Physical Layer 87
    Mihai Enescu, Keeth Jayasinghe, Karri Ranta-Aho, Karol Schober, and Antti Toskala

    6.1 Introduction 87

    6.2 5G Multiple Access Principle 88

    6.3 Physical Channels and Signals 92

    6.4 Basic Structures for 5G Frame Structure 95

    6.5 5G Channel Structures and Beamforming Basics 98

    6.6 Random Access 100

    6.7 Downlink User Data Transmission 101

    6.8 Uplink User Data Transmission 103

    6.9 Uplink Signaling Transmission 105

    6.10 Downlink Signaling Transmission 108

    6.11 Physical Layer Procedures 111

    6.11.1 HARQ Procedure 112

    6.11.2 Uplink Power Control 112

    6.11.3 Timing Advance 113

    6.12 5G MIMO and Beamforming Operation 113

    6.12.1 Downlink MIMO Transmission Schemes 113

    6.12.2 Beam Management Framework 114

    6.12.2.1 Initial Beam Acquisition 116

    6.12.2.2 Beam Measurement and Reporting 116

    6.12.2.3 Beam Indication: QCL and Transmission Configuration Indicator (TCI) 117

    6.12.2.4 Beam Recovery 120

    6.12.3 CSI Framework 122

    6.12.3.1 Reporting Settings 122

    6.12.3.2 Resource Settings 122

    6.12.3.3 Reporting Configurations 123

    6.12.3.4 Report Quantity Configurations 125

    6.12.4 CSI Components 126

    6.12.4.1 Channel Quality Indicator (CQI) 126

    6.12.4.2 Precoding Matrix Indicator (PMI) 126

    6.12.4.3 Resource Indicators: CRI, SSBRI, RI, LI 132

    6.12.5 Uplink MIMO Transmission Schemes 132

    6.12.5.1 Codebook-Based Uplink Transmission 132

    6.12.5.2 Non-Codebook-Based Uplink Transmission 133

    6.13 Channel Coding with 5G 133

    6.13.1 Channel Coding for Data Channel 134

    6.13.1.1 5G LDPC Code Design 135

    6.13.1.2 5G LDPC Coding Chain 137

    6.13.2 Channel Coding for Control Channels 140

    6.13.2.1 5G Polar Coding Design 140

    6.14 Dual Connectivity 142

    6.15 5G Data Rates 144

    6.16 Physical Layer Measurements 145

    6.17 UE Capability 146

    6.18 Summary 147

    References 148

    7 5G Radio Protocols 149
    Tero Henttonen, Jarkko Koskela, Benoist Sébire, and Antti Toskala

    7.1 Introduction 149

    7.2 5G Radio Protocol Layers 150

    7.3 SDAP 151

    7.3.1 Overview 151

    7.3.2 QoS Flow Remapping 153

    7.3.3 MDBV 155

    7.3.4 Header 155

    7.4 PDCP 156

    7.4.1 Overview 156

    7.4.2 Reordering 156

    7.4.3 Security 157

    7.4.4 Header Compression 157

    7.4.5 Duplicates and Status Reports 158

    7.4.6 Duplication 159

    7.5 RLC 160

    7.5.1 Overview 160

    7.5.2 Segmentation 160

    7.5.3 Error Correction 161

    7.5.4 Transmissions Modes 161

    7.5.5 Duplication 161

    7.6 MAC Layer 162

    7.6.1 Overview 162

    7.6.2 Logical Channels 162

    7.6.3 Random Access Procedure 163

    7.6.4 HARQ and Transmissions 163

    7.6.5 Scheduling Request 164

    7.6.6 Logical Channel Prioritization and Multiplexing 164

    7.6.7 BSR 165

    7.6.8 PHR 166

    7.6.9 DRX 166

    7.6.10 Bandwidth Parts 166

    7.6.11 BFD and Recovery 167

    7.6.12 Other Functions 167

    7.6.13 MAC PDU Structure 168

    7.7 The RRC Protocol 168

    7.7.1 Overview 168

    7.7.2 Broadcast of System Information 171

    7.7.3 Paging 174

    7.7.4 Overview of Idle and Inactive Mode Mobility 175

    7.7.5 RRC Connection Control and Mobility 179

    7.7.6 RRC Support of Upper Layers 183

    7.7.7 Different Versions of Release 15 RRC Specifications 184

    7.8 Radio Protocols in RAN Architecture 185

    7.9 Summary 185

    References 186

    8 Deployment Aspects 187
    Harri Holma, Riku Luostari, Jussi Reunanen, and Puripong Thepchatri

    8.1 Introduction 187

    8.2 Spectrum Resources 188

    8.2.1 Spectrum Refarming and Dynamic Spectrum Sharing 188

    8.3 Network Density 190

    8.4 Mobile Data Traffic Growth 190

    8.4.1 Mobile Data Volume 190

    8.4.2 Traffic Asymmetry 191

    8.5 Base Station Site Solutions 192

    8.6 Electromagnetic Field (EMF) Considerations 194

    8.7 Network Synchronization and Coordination Requirements 195

    8.7.1 Main Interference Scenarios in TDD System 196

    8.7.2 TDD Frame Configuration Options 197

    8.7.3 Cell Size and Random Access Channel 197

    8.7.4 Guard Period and Safety Zone 198

    8.7.5 Intra-Frequency Operation 199

    8.7.6 Inter-Operator Synchronization 201

    8.7.7 Synchronization Requirements in 3GPP 202

    8.7.8 Synchronization from Global Navigation Satellite System (GNSS) 204

    8.7.9 Synchronization with ToP 205

    8.7.10 Timing Alignment Between Vendors 208

    8.8 5G Overlay with Another Vendor LTE 209

    8.9 Summary 210

    References 211

    9 Transport 213
    Esa Markus Metsälä and Juha Salmelin

    9.1 5G Transport Network 213

    9.1.1 5G Transport 213

    9.1.2 Types of 5G Transport 214

    9.1.3 Own versus Leased Transport 215

    9.1.4 Common Transport 216

    9.1.5 Mobile Backhaul Tiers 216

    9.1.6 Logical and Physical Transport Topology 218

    9.1.7 Standards Viewpoint 218

    9.2 Capacity and Latency 219

    9.2.1 Transport Capacity Upgrades 219

    9.2.2 Access Link 220

    9.2.3 Distribution Tier 221

    9.2.4 Backhaul and High Layer Fronthaul Capacity 221

    9.2.5 Low Layer Fronthaul Capacity 222

    9.2.6 Latency 223

    9.2.7 QoS Marking 224

    9.3 Technologies 225

    9.3.1 Client Ports 225

    9.3.2 Networking Technologies Overview 226

    9.4 Fronthaul and Backhaul Interfaces 228

    9.4.1 Low Layer Fronthaul 228

    9.4.2 NG Interface 230

    9.4.3 Xn/X2 Interfaces 231

    9.4.4 F1 Interface 231

    9.5 Specific Topics 232

    9.5.1 Network Slicing in Transport 232

    9.5.2 URLLC Transport 233

    9.5.3 IAB (Integrated Access and Backhaul) 234

    9.5.4 NTNs (Non-Terrestrial Networks) 234

    9.5.5 Time-Sensitive Networks 235

    References 236

    10 5G Performance 239
    Harri Holma, Suresh Kalyanasundaram, and Venkat Venkatesan

    10.1 Introduction 239

    10.2 Peak Data Rates 241

    10.3 Practical Data Rates 243

    10.3.1 User Data Rates at 2.5–5.0 GHz 243

    10.3.2 User Data Rates at 28 GHz 244

    10.3.3 User Data Rates with Fixed Wireless Access at 28 GHz 245

    10.4 Latency 247

    10.4.1 User Plane Latency 247

    10.4.2 Low Latency Architecture 253

    10.4.3 Control Plane Latency 255

    10.5 Link Budgets 257

    10.5.1 Link Budget for Sub-6-GHz TDD 257

    10.5.2 Link Budget for Low Band FDD 260

    10.5.3 Link Budget for Millimeter Waves 260

    10.6 Coverage for Sub-6-GHz Band 262

    10.6.1 Signal Propagation at 3.5 GHz Band 262

    10.6.2 Beamforming Antenna Gain 262

    10.6.3 Uplink Coverage Solutions 264

    10.7 Massive MIMO and Beamforming Algorithms 269

    10.7.1 Antenna Configuration 269

    10.7.2 Beamforming Algorithms 271

    10.7.3 Radio Network Architecture and Functionality Split 275

    10.7.4 RF Solution Benchmarking 277

    10.7.5 Distributed MIMO 278

    10.8 Packet Scheduling Algorithms 280

    10.8.1 Low Latency Scheduling 280

    10.8.2 Mini-Slot Scheduling 285

    10.9 Spectral Efficiency and Capacity 286

    10.9.1 Downlink Spectral Efficiency in 5G Compared to LTE 286

    10.9.2 Downlink Spectral Efficiency with Different Antenna Configurations 288

    10.9.3 Uplink Spectral Efficiency 288

    10.9.4 IMT-2020 Performance Evaluation 289

    10.9.5 5G Capacity at Mid-Band 291

    10.10 Network Energy Efficiency 291

    10.11 Traffic and Device Density 294

    10.12 Ultra-Reliability for Mission-Critical Communication 296

    10.12.1 Antenna Diversity 296

    10.12.2 Macro-Diversity and Multi-Connectivity 296

    10.12.3 Interference Cancelation 297

    10.12.4 HARQ (Hybrid Automatic Repeat Request) for High Reliability 297

    10.13 Mobility and High-Speed Trains 299

    10.14 Summary 302

    References 302

    11 Measurements 305
    Yoshihisa Kishiyama and Tetsuro Imai

    11.1 Introduction 305

    11.2 Propagation Measurements Above 6 GHz 306

    11.2.1 Fundamental Experiments 306

    11.2.2 Urban Microcellular Scenario 312

    11.2.3 Indoor Hotspot Scenario 315

    11.2.4 Outdoor-to-Indoor Scenario 319

    11.3 Field Experiments with Sub-6-GHz 5G Radio 326

    11.3.1 Experimental System with Higher Rank MIMO 326

    11.3.2 Field Experiments 328

    11.4 Field Experiments of Millimeter Wave 5G Radio 332

    11.4.1 Experimental System with Beamforming and Beam Tracking 332

    11.4.2 Field Experiments 336

    11.5 Summary 344

    References 345

    12 5G RF Design Challenges 349
    Petri Vasenkari, Dominique Brunel, and Laurent Noël

    12.1 Introduction 349

    12.2 Impact of New Physical Layer on RF Performance 350

    12.2.1 New Uplink Waveforms 350

    12.2.2 New Frequency Range Definition 352

    12.2.3 Impact of NSA Operation on the 5G UE RF Front-End 354

    12.2.4 New Features Impacting UE RF Front-End 358

    12.2.5 RAN4 Technical Specification (TS) Survival Guide 361

    12.3 5G Standalone Performance Aspects in Frequency Range 1 363

    12.3.1 New Channel Bandwidths and Improved SU 363

    12.3.2 Impact of Large Channel Bandwidths on PA Efficiency Enhancement Techniques 365

    12.3.3 FR1 Frequency Bands 366

    12.3.4 Transmitter Chain Aspects 369

    12.4 5G Standalone Performance Aspects in mmWave Frequency Range 2 373

    12.4.1 Channel Bandwidths and SU 373

    12.4.2 FR2 Bands 373

    12.4.3 FR2 Key RF Parameters 374

    12.4.4 Transmitter Aspects 376

    12.4.5 Multi-Band Support and Carrier Aggregation 378

    12.4.6 OTA Conformance Test Challenges 378

    12.5 Dual Uplink Performance Challenges for NSA Operation 381

    12.5.1 From Single UL to Dual UL Operation 381

    12.5.2 EN-DC: Explosion of LTE-CA Combinations as Baseline to 5G 383

    12.5.3 FR1 UE Types and Power Sharing in EN-DC 383

    12.5.4 Dual Uplink Challenges for EN-DC Operation in FR1 383

    12.5.5 Dual Uplink Challenges for EN-DC and NN-DC Operation in FR2 391

    12.6 Examples of UE Implementation Challenges 392

    12.6.1 More Antennas, More Bands to Multiplex, and More Concurrency 392

    12.6.2 FR2 Antenna Integration and Smartphone Design 395

    12.7 Summary 396

    References 397

    13 5G Modem Design Challenges 399
    YihShen Chen, Jiann-Ching Guey, Chienhwa Hwang, PeiKai Liao, Guillaume Sébire, Weide Wu, and Weidong Yang

    13.1 Introduction 399

    13.2 High Data Rate, System Flexibility, and Computational Complexity 401

    13.2.1 Channel Coding Aspects Versus UE Complexity 401

    13.2.2 MIMO and Network Flexibility Versus UE Complexity 404

    13.3 Low Latency, Flexible Timing, and Modem Control Flow Complexity 406

    13.3.1 Low Latency Aspects Versus Modem Processing Capability 407

    13.3.2 System Flexibility Versus Modem Control Timing 411

    13.4 Multi-RAT Coexistence and Modem Architecture 413

    13.4.1 Dual Connectivity and Modem Architecture 414

    13.4.2 Impact of LTE/NR Coexistence on Modem Design 416

    13.4.3 Uplink Transmission Design for Minimizing Intermodulation Effect 418

    13.5 Wider Bandwidth Operation and Modem Power Consumption 419

    13.5.1 Modem Power Consumption in Daily Use 419

    13.5.2 Reducing Modem Power Consumption by Bandwidth Adaptation 422

    13.5.3 Impacts on Modem Design 426

    13.6 Summary 428

    References 429

    14 Internet of Things Optimization 431
    Harri Holma, Rapeepat Ratasuk, and Mads Lauridsen

    14.1 Introduction 431

    14.2 IoT Optimization in LTE Radio 433

    14.3 LTE-M 436

    14.4 Narrowband-IoT 439

    14.5 IoT Optimization in LTE Core Network 442

    14.6 Coverage 443

    14.7 Delay and Capacity 444

    14.8 Power Saving Features 446

    14.9 NB-IoT Power Consumption Measurements 448

    14.10 IoT Solution Benchmarking 449

    14.11 IoT Optimizations in 5G 451

    14.12 Summary 458

    References 459

    15 5G Phase 2 and Beyond 461
    Antti Toskala

    15.1 Introduction 461

    15.2 3GPP Release 16 Timing and Key Themes 461

    15.2.1 5G Unlicensed (5G-U) 462

    15.2.2 Industrial IoT and URLLC Enhancements 464

    15.2.3 Toward Dynamic TDD 466

    15.2.4 Integrated Access and Backhaul 467

    15.2.5 Mobility Enhancements 469

    15.2.6 MIMO Enhancements 470

    15.2.7 Multi-Radio Dual Connectivity Enhancements 470

    15.2.8 Two-Step RACH 471

    15.2.9 UE Power Consumption Reduction 471

    15.2.10 LightweightMobile Broadband with NR-Light 472

    15.2.11 5G V2X 473

    15.2.12 New 5G Core Features in Release 16 474

    15.3 Summary and Outlook for Release 17 475

    References 476

    16 LTE-Advanced Evolution 477
    Harri Holma and Timo Lunttila

    16.1 Introduction 477

    16.2 Overview of LTE Evolution 478

    16.3 LTE-Advanced Pro Technologies 481

    16.3.1 Multi-Gbps Data Rates with Carrier Aggregation Evolution 481

    16.3.2 Utilization of 5 GHz Unlicensed Band 482

    16.3.3 Enhanced Spectral Efficiency with 3D Beamforming and Interference Cancelation 485

    16.3.4 Extreme Local Capacity with Ultra-Dense Network 487

    16.3.5 Millisecond Latency with Shorter Transmission Time Interval 487

    16.3.6 IoT Optimization 490

    16.3.7 D2D Communications 490

    16.3.8 Public Safety 492

    16.4 5G and LTE Benchmarking 494

    16.4.1 Peak Data Rate 495

    16.4.2 Cell Edge Data Rate 495

    16.4.3 Spectral Efficiency 496

    16.4.4 Mobility 496

    16.4.5 Traffic Density 497

    16.4.6 Device Density 497

    16.5 Summary 498

    References 499

    Index 501

  • 사용후기

    사용후기가 없습니다.

  • 배송/교환정보

    배송정보

    배송 안내 입력전입니다.

    교환/반품

    교환/반품 안내 입력전입니다.

선택하신 도서가 장바구니에 담겼습니다.

계속 둘러보기 장바구니보기
회사소개 개인정보 이용약관
Copyright © 2001-2019 도서출판 홍릉. All Rights Reserved.
상단으로