본문 바로가기
장바구니0

Statistical Mechanics: Entropy, Order Parameters and Complexity > 물리학

도서간략정보

Statistical Mechanics: Entropy, Order Parameters and Complexity
판매가격 35,000원
저자 James P. Sethna
도서종류 외국도서
출판사 Oxford University Press
발행언어 영어
발행일 2006-4
페이지수 352
ISBN 9780198566779
도서구매안내 온, 오프라인 서점에서 구매 하실 수 있습니다.

구매기능

  • 도서 정보

    도서 상세설명

    Table of Contents
    List of figures xv
    1 What is statistical mechanics? 1
    Exercises 4
    1.1 Quantum dice 4
    1.2 Probability distributions 5
    1.3 Waiting times 6
    1.4 Stirling\'s approximation 7
    1.5 Stirling and asymptotic series 7
    1.6 Random matrix theory 8
    1.7 Six degrees of separation 9
    1.8 Satisfactory map colorings 12
    2 Random walks and emergent properties 15
    2.1 Random walk examples: universality and scale invariance 15
    2.2 The diffusion equation 19
    2.3 Currents and external forces 20
    2.4 Solving the diffusion equation 22
    2.4.1 Fourier 23
    2.4.2 Green 23
    Exercises 25
    2.1 Random walks in grade space 25
    2.2 Photon diffusion in the Sun 26
    2.3 Molecular motors and random walks 26
    2.4 Perfume walk 27
    2.5 Generating random walks 28
    2.6 Fourier and Green 28
    2.7 Periodic diffusion 29
    2.8 Thermal diffusion 30
    2.9 Frying pan 30
    2.10 Polymers and random walks 30
    2.11 Stocks, volatility, and diversification 31
    2.12 Computational finance: pricing derivatives 32
    2.13 Building a percolation network 33
    3 Temperature and equilibrium 37
    3.1 The microcanonical ensemble 37
    3.2 The microcanonical ideal gas 39
    3.2.1 Configuration space 39
    3.2.2 Momentum space 41
    3.3 What is temperature? 44
    3.4 Pressure and chemical potential 47
    3.4.1 Advanced topic: pressure in mechanics and statistical mechanics 48
    3.5 Entropy, the ideal gas, and phase-space refinements 51
    Exercises 53
    3.1 Temperature and energy 54
    3.2 Large and very large numbers 54
    3.3 Escape velocity 54
    3.4 Pressure computation 54
    3.5 Hard sphere gas 55
    3.6 Connecting two macroscopic systems 55
    3.7 Gas mixture 56
    3.8 Microcanonical energy fluctuations 56
    3.9 Gauss and Poisson 57
    3.10 Triple product relation 58
    3.11 Maxwell relations 58
    3.12 Solving differential equations: the pendulum 58
    4 Phase-space dynamics and ergodicity 63
    4.1 Liouville\'s theorem 63
    4.2 Ergodicity 65
    Exercises 69
    4.1 Equilibration 69
    4.2 Liouville vs. the damped pendulum 70
    4.3 Invariant measures 70
    4.4 Jupiter! and the KAM theorem 72
    5 Entropy 77
    5.1 Entropy as irreversibility: engines and the heat death of the Universe 77
    5.2 Entropy as disorder 81
    5.2.1 Entropy of mixing: Maxwell\'s demon and osmotic pressure 82
    5.2.2 Residual entropy of glasses: the roads not taken 83
    5.3 Entropy as ignorance: information and memory 85
    5.3.1 Non-equilibrium entropy 86
    5.3.2 Information entropy 87
    Exercises 90
    5.1 Life and the heat death of the Universe 91
    5.2 Burning information and Maxwellian demons 91
    5.3 Reversible computation 93
    5.4 Black hole thermodynamics 93
    5.5 Pressure-volume diagram 94
    5.6 Carnot refrigerator 95
    5.7 Does entropy increase? 95
    5.8 The Arnol\'d cat map 95
    5.9 Chaos, Lyapunov, and entropy increase 96
    5.10 Entropy increases: diffusion 97
    5.11 Entropy of glasses 97
    5.12 Rubber band 98
    5.13 How many shuffles? 99
    5.14 Information entropy 100
    5.15 Shannon entropy 100
    5.16 Fractal dimensions 101
    5.17 Deriving entropy 102
    6 Free energies 105
    6.1 The canonical ensemble 106
    6.2 Uncoupled systems and canonical ensembles 109
    6.3 Grand canonical ensemble 112
    6.4 What is thermodynamics? 113
    6.5 Mechanics: friction and fluctuations 117
    6.6 Chemical equilibrium and reaction rates 118
    6.7 Free energy density for the ideal gas 121
    Exercises 123
    6.1 Exponential atmosphere 124
    6.2 Two-state system 125
    6.3 Negative temperature 125
    6.4 Molecular motors and free energies 126
    6.5 Laplace 127
    6.6 Lagrange 128
    6.7 Legendre 128
    6.8 Euler 128
    6.9 Gibbs-Duhem 129
    6.10 Clausius-Clapeyron 129
    6.11 Barrier crossing 129
    6.12 Michaelis-Menten and Hill 131
    6.13 Pollen and hard squares 132
    6.14 Statistical mechanics and statistics 133
    7 Quantum statistical mechanics 135
    7.1 Mixed states and density matrices 135
    7.1.1 Advanced topic: density matrices 136
    7.2 Quantum harmonic oscillator 139
    7.3 Bose and Fermi statistics 140
    7.4 Non-interacting bosons and fermions 141
    7.5 Maxwell-Boltzmann \'quantum\' statistics 144
    7.6 Black-body radiation and Bose condensation 146
    7.6.1 Free particles in a box 146
    7.6.2 Black-body radiation 147
    7.6.3 Bose condensation 148
    7.7 Metals and the Fermi gas 150
    Exercises 151
    7.1 Ensembles and quantum statistics 151
    7.2 Phonons and photons are bosons 152
    7.3 Phase-space units and the zero of entropy 153
    7.4 Does entropy increase in quantum systems? 153
    7.5 Photon density matrices 154
    7.6 Spin density matrix 154
    7.7 Light emission and absorption 154
    7.8 Einstein\'s A and B 155
    7.9 Bosons are gregarious: superfluids and lasers 156
    7.10 Crystal defects 157
    7.11 Phonons on a string 157
    7.12 Semiconductors 157
    7.13 Bose condensation in a band 158
    7.14 Bose condensation: the experiment 158
    7.15 The photon-dominated Universe 159
    7.16 White dwarfs, neutron stars, and black holes 161
    8 Calculation and computation 163
    8.1 The Ising model 163
    8.1.1 Magnetism 164
    8.1.2 Binary alloys 165
    8.1.3 Liquids, gases, and the critical point 166
    8.1.4 How to solve the Ising model 166
    8.2 Markov chains 167
    8.3 What is a phase? Perturbation theory 171
    Exercises 174
    8.1 The Ising model 174
    8.2 Ising fluctuations and susceptibilities 174
    8.3 Waiting for Godot, and Markov 175
    8.4 Red and green bacteria 175
    8.5 Detailed balance 176
    8.6 Metropolis 176
    8.7 Implementing Ising 176
    8.8 Wolff 177
    8.9 Implementing Wolff 177
    8.10 Stochastic cells 178
    8.11 The repressilator 179
    8.12 Entropy increases! Markov chains 182
    8.13 Hysteresis and avalanches 182
    8.14 Hysteresis algorithms 185
    8.15 NP-completeness and kSAT 186
    9 Order parameters, broken symmetry, and topology 191
    9.1 Identify the broken symmetry 192
    9.2 Define the order parameter 192
    9.3 Examine the elementary excitations 196
    9.4 Classify the topological defects 198
    Exercises 203
    9.1 Topological defects in nematic liquid crystals 203
    9.2 Topological defects in the XY model 204
    9.3 Defect energetics and total divergence terms 205
    9.4 Domain walls in magnets 206
    9.5 Landau theory for the Ising model 206
    9.6 Symmetries and wave equations 209
    9.7 Superfluid order and vortices 210
    9.8 Superfluids: density matrices and ODLRO 211
    10 Correlations, response, and dissipation 215
    10.1 Correlation functions: motivation 215
    10.2 Experimental probes of correlations 217
    10.3 Equal-time correlations in the ideal gas 218
    10.4 Onsager\'s regression hypothesis and time correlations 220
    10.5 Susceptibility and linear response 222
    10.6 Dissipation and the imaginary part 223
    10.7 Static susceptibility 224
    10.8 The fluctuation-dissipation theorem 227
    10.9 Causality and Kramers-Kronig 229
    Exercises 231
    10.1 Microwave background radiation 231
    10.2 Pair distributions and molecular dynamics 233
    10.3 Damped oscillator 235
    10.4 Spin 236
    10.5 Telegraph noise in nanojunctions 236
    10.6 Fluctuation-dissipation: Ising 237
    10.7 Noise and Langevin equations 238
    10.8 Magnetic dynamics 238
    10.9 Quasiparticle poles and Goldstone\'s theorem 239
    11 Abrupt phase transitions 241
    11.1 Stable and metastable phases 241
    11.2 Maxwell construction 243
    11.3 Nucleation: critical droplet theory 244
    11.4 Morphology of abrupt transitions 246
    11.4.1 Coarsening 246
    11.4.2 Martensites 250
    11.4.3 Dendritic growth 250
    Exercises 251
    11.1 Maxwell and van der Waals 251
    11.2 The van der Waals critical point 252
    11.3 Interfaces and van der Waals 252
    11.4 Nucleation in the Ising model 253
    11.5 Nucleation of dislocation pairs 254
    11.6 Coarsening in the Ising model 255
    11.7 Origami microstructure 255
    11.8 Minimizing sequences and microstructure 258
    11.9 Snowflakes and linear stability 259
    12 Continuous phase transitions 263
    12.1 Universality 265
    12.2 Scale invariance 272
    12.3 Examples of critical points 277
    12.3.1 Equilibrium criticality: energy versus entropy 278
    12.3.2 Quantum criticality: zero-point fluctuations versus energy 278
    12.3.3 Dynamical systems and the onset of chaos 279
    12.3.4 Glassy systems: random but frozen 280
    12.3.5 Perspectives 281
    Exercises 282
    12.1 Ising self-similarity 282
    12.2 Scaling and corrections to scaling 282
    12.3 Scaling and coarsening 282
    12.4 Bifurcation theory 283
    12.5 Mean-field theory 284
    12.6 The onset of lasing 284
    12.7 Renormalization-group trajectories 285
    12.8 Superconductivity and the renormalization group 286
    12.9 Period doubling 288
    12.10 The renormalization group and the central limit theorem: short 291
    12.11 The renormalization group and the central limit theorem: long 291
    12.12 Percolation and universality 293
    12.13 Hysteresis and avalanches: scaling 296
    A Appendix: Fourier methods 299
    A.1 Fourier conventions 299
    A.2 Derivatives, convolutions, and correlations 302
    A.3 Fourier methods and function space 303
    A.4 Fourier and translational symmetry 305
    Exercises 307
    A.1 Sound wave 307
    A.2 Fourier cosines 307
    A.3 Double sinusoid 307
    A.4 Fourier Gaussians 308
    A.5 Uncertainty 309
    A.6 Fourier relationships 309
    A.7 Aliasing and windowing 310
    A.8 White noise 311
    A.9 Fourier matching 311
    A.10 Gibbs phenomenon 311
    References 313
    Index 323
    Related SubjectsCivil & Structural EngineeringPhysicsMathematicsMore by This Author loading... Related EssentiaLists
    uiAction=GetRelatedListsByEanFromProductPage&page=List&pageType=list&ean=9780198566779&productCode=BK&maxCount=5&threshold=10 loading... Fans of this Book
    uiAction=GetProfileBlurbsWithEANinFavorites&page=UserProfile&pageType=profile&eanInput=9780198566779 loading... Search Related CategoriesNonfiction
    Statistical mechanics
  • 사용후기

    사용후기가 없습니다.

  • 배송/교환정보

    배송정보

    배송 안내 입력전입니다.

    교환/반품

    교환/반품 안내 입력전입니다.

선택하신 도서가 장바구니에 담겼습니다.

계속 둘러보기 장바구니보기
회사소개 개인정보 이용약관
Copyright © 2001-2019 도서출판 홍릉. All Rights Reserved.
상단으로