본문 바로가기
장바구니0

Condensed Matter in a Nutshell > 물리학

도서간략정보

Condensed Matter in a Nutshell
판매가격 79,000원
저자 Mahan
도서종류 외국도서
출판사 Princeton University Press
발행언어 영어
발행일 2010-10
페이지수 590
ISBN 9780691140162
도서구매안내 온, 오프라인 서점에서 구매 하실 수 있습니다.

구매기능

  • 도서 정보

    도서 상세설명

    Preface xiii
    Chapter 1: Introduction 1
    1.1 1900-1910 1
    1.2 Crystal Growth 2
    1.3 Materials by Design 4
    1.4 Artificial Structures 5
    Chapter 2: Crystal Structures 9
    2.1 Lattice Vectors 9
    2.2 Reciprocal Lattice Vectors 11
    2.3 Two Dimensions 13
    2.4 Three Dimensions 15
    2.5 Compounds 19
    2.6 Measuring Crystal Structures 21
    2.6.1 X-ray Scattering 22
    2.6.2 Electron Scattering 23
    2.6.3 Neutron Scattering 23
    2.7 Structure Factor 25
    2.8 EXAFS 26
    2.9 Optical Lattices 28
    Chapter 3: Emergy Bands 31
    3.1 Bloch\'s Theorem 31
    3.1.1 Floquet\'s Theorem 32
    3.2 Nearly Free Electron Bands 36
    3.2.1 Periodic Potentials 36
    3.3 Tight-binding Bands 38
    3.3.1 s-State Bands 38
    3.3.2 p-State Bands 41
    3.3.3 Wannier Functions 43
    3.4 Semiconductor Energy Bands 44
    3.4.1 What Is a Semiconductor? 44
    3.4.2 Si, Ge, GaAs 47
    3.4.3 HgTe and CdTe 50
    3.4.4 k • p Theory 51
    3.4.5 Electron Velocity 55
    3.5 Density of States 55
    3.5.1 Dynamical Mean Field Theory 58
    3.6 Pseudopotentials 60
    3.7 Measurement of Energy Bands 62
    3.7.1 Cyclotron Resonance 62
    3.7.2 Synchrotron Band Mapping 63
    Chapter 4: Insulators 68
    4.1 Rare Gas Solids 68
    4.2 Ionic Crystals 69
    4.2.1 Madelung energy 71
    4.2.2 Polarization Interactions 72
    4.2.3 Van der Waals Interaction 75
    4.2.4 Ionic Radii 75
    4.2.5 Repulsive Energy 76
    4.2.6 Phonons 77
    4.3 Dielectric Screening 78
    4.3.1 Dielectric Function 78
    4.3.2 Polarizabilities 80
    4.4 Ferroelectrics 82
    4.4.1 Microscopic Theory 83
    4.4.2 Thermodynamics 87
    4.4.3 SrTiO3 89
    4.4.4 BaTiO3 91
    Chapter 5: Free Electron Metals 94
    5.1 Introduction 94
    5.2 Free Electrons 96
    5.2.1 Electron Density 96
    5.2.2 Density of States 97
    5.2.3 Nonzero Temperatures 98
    5.2.4 Two Dimensions 101
    5.2.5 Fermi Surfaces 102
    5.2.6 Thermionic Emission 104
    5.3 Magnetic Fields 105
    5.3.1 Integer Quantum Hall Effect 107
    5.3.2 Fractional Quantum Hall Effect 110
    5.3.3 Composite Fermions 113
    5.3.4 deHaas-van Alphen Effect 113
    5.4 Quantization of Orbits 117
    5.4.1 Cyclotron Resonance 119
    Chapter 6: Electron-Electron Interactions 127
    6.1 Second Quantization 128
    6.1.1 Tight-binding Models 131
    6.1.2 Nearly Free Electrons 131
    6.1.3 Hartree Energy: Wigner-Seitz 134
    6.1.4 Exchange Energy 136
    6.1.5 Compressibility 138
    6.2 Density Operator 141
    6.2.1 Two Theorems 142
    6.2.2 Equations of Motion 143
    6.2.3 Plasma Oscillations 144
    6.2.4 Exchange Hole 146
    6.3 Density Functional Theory 148
    6.3.1 Functional Derivatives 149
    6.3.2 Kinetic Energy 150
    6.3.3 Kohn-Sham Equations 151
    6.3.4 Exchange and Correlation 152
    6.3.5 Application to Atoms 154
    6.3.6 Time-dependent Local Density Approximation 155
    6.3.7 TDLDA in Solids 157
    6.4 Dielectric Function 158
    6.4.1 Random Phase Approximation 159
    6.4.2 Properties of P (q, w) 161
    6.4.3 Hubbard-Singwi Dielectric Functions 164
    6.5 Impurities in Metals 165
    6.5.1 Friedel Analysis 166
    6.5.2 RKKY Interaction 170
    Chapter 7: Phonons 176
    7.1 Phonon Dispersion 176
    7.1.1 Spring Constants 177
    7.1.2 Example: Square Lattice 179
    7.1.3 Polar Crystals 181
    7.1.4 Phonons 181
    7.1.5 Dielectric Function 185
    7.2 Phonon Operators 187
    7.2.1 Simple Harmonic Oscillator 187
    7.2.2 Phonons in One Dimension 189
    7.2.3 Binary Chain 192
    7.3 Phonon Density of States 195
    7.3.1 Phonon Heat Capacity 197
    7.3.2 Isotopes 199
    7.4 Local Modes 203
    7.5 Elasticity 205
    7.5.1 Stress and Strain 205
    7.5.2 Isotropic Materials 208
    7.5.3 Boundary Conditions 210
    7.5.4 Defect Interactions 211
    7.5.5 Piezoelectricity 214
    7.5.6 Phonon Focusing 215
    7.6 Thermal Expansion 216
    7.7 Debye-Waller Factor 217
    7.8 Solitons 220
    7.8.1 Solitary Waves 220
    7.8.2 Cnoidal Functions 222
    7.8.3 Periodic Solutions 223
    Chapter 8: Boson Systems 230
    8.1 Second Quantization 230
    8.2 Superfluidity 232
    8.2.1 Bose-Einstein Condensation 232
    8.2.2 Bogoliubov Theory of Superfluidity 234
    8.2.3 Off-diagonal Long-range Order 240
    8.3 Spin Waves 244
    8.3.1 Jordan-Wigner Transformation 245
    8.3.2 Holstein-Primakoff Transformation 247
    8.3.3 Heisenberg Model 248
    Chapter 9: Electron-Phonon Interactions 254
    9.1 Semiconductors and Insulators 254
    9.1.1 Deformation Potentials 255
    9.1.2 Fruhlich Interaction 257
    9.1.3 Piezoelectric Interaction 258
    9.1.4 Tight-binding Models 259
    9.1.5 Electron Self-energies 260
    9.2 Electron-Phonon Interaction in Metals 263
    9.2.1 λ 264
    9.2.2 Phonon Frequencies 267
    9.2.3 Electron-Phonon Mass Enhancement 268
    9.3 Peierls Transition 272
    9.4 Phonon-mediated Interactions 276
    9.4.1 Fixed Electrons 276
    9.4.2 Dynamical Phonon Exchange 278
    9.5 Electron-Phonon Effects at Defects 281
    9.5.1 F-Centers 281
    9.5.2 Jahn-Teller Effect 284
    Chapter 10: Extrinsic Semiconductors 287
    10.1 Introduction 287
    10.1.1 Impurities and Defects in Silicon 288
    10.1.2 Donors 289
    10.1.3 Statistical Mechanics of Defects 292
    10.1.4 n-p Product 294
    10.1.5 Chemical Potential 295
    10.1.6 Schottky Barriers 297
    10.2 Localization 301
    10.2.1 Mott Localization 301
    10.2.2 Anderson Localization 304
    10.2.3 Weak Localization 304
    10.2.4 Percolation 306
    10.3 Variable Range Hopping 310
    10.4 Mobility Edge 311
    10.5 Band Gap Narrowing 312
    Chapter 11: Transport Phenomena 320
    11.1 Introduction 320
    11.2 Drude Theory 321
    11.3 Bloch Oscillations 322
    11.4 Boltzmann Equation 324
    11.5 Currents 327
    11.5.1 Transport Coefficients 327
    11.5.2 Metals 329
    11.5.3 Semiconductors and Insulators 333
    11.6 Impurity Scattering 335
    11.6.1 Screened Impurity Scattering 336
    11.6.2 T-matrix Description 337
    11.6.3 Mooij Correlation 338
    11.7 Electron-Phonon Interaction 340
    11.7.1 Lifetime 341
    11.7.2 Semiconductors 343
    11.7.3 Saturation Velocity 344
    11.7.4 Metals 347
    11.7.5 Temperature Relaxation 348
    11.8 Ballistic Transport 350
    11.9 Carrier Drag 353
    11.10 Electron Tunneling 355
    11.10.1 Giaever Tunneling 356
    11.10.2 Esaki Diode 358
    11.10.3 Schottky Barrier Tunneling 361
    11.10.4 Effective Mass Matching 362
    11.11 Phonon Transport 364
    11.11.1 Transport in Three Dimensions 364
    11.11.2 Minimum Thermal Conductivity 365
    11.11.3 Kapitza Resistance 366
    11.11.4 Measuring Thermal Conductivity 368
    11.12 Thermoelectric Devices 370
    11.12.1 Maximum Cooling 371
    11.12.2 Refrigerator 373
    11.12.3 Power Generation 374
    Chapter 12: Optical Properties 379
    12.1 Introduction 379
    12.1.1 Optical Functions 379
    12.1.2 Kramers-Kronig Analysis 381
    12.2 Simple Metals 383
    12.2.1 Drude 383
    12.3 Force-Force Correlations 385
    12.3.1 Impurity Scattering 386
    12.3.2 Interband Scattering 388
    12.4 Optical Absorption 389
    12.4.1 Interband Transitions in Insulators 389
    12.4.2 Wannier Excitons 392
    12.4.3 Frenkel Excitons 395
    12.5 X-Ray Edge Singularity 396
    12.6 Photoemission 399
    12.7 Conducting Polymers 401
    12.8 Polaritons 404
    12.8.1 Phonon Polaritons 404
    12.8.2 Plasmon Polaritons 405
    12.9 Surface Polaritons 406
    12.9.1 Surface Plasmons 408
    12.9.2 Surface Optical Phonons 410
    12.9.3 Surface Charge Density 413
    Chapter 13: Magnetism 418
    13.1 Introduction 418
    13.2 Simple Magnets 418
    13.2.1 Atomic Magnets 418
    13.2.2 Hund\'s Rules 418
    13.2.3 Curie\'s Law 420
    13.2.4 Ferromagnetism 422
    13.2.5 Antiferromagnetism 423
    13.3 3d Metals 424
    13.4 Theories of Magnetism 425
    13.4.1 Ising and Heisenberg Models 425
    13.4.2 Mean Field Theory 427
    13.4.3 Landau Theory 431
    13.4.4 Critical Phenomena 433
    13.5 Magnetic Susceptibility 434
    13.6 Ising Model 436
    13.6.1 One Dimension 436
    13.6.2 Two and Three Dimensions 437
    13.6.3 Bethe Lattice 439
    13.6.4 Order-Disorder Transitions 443
    13.6.5 Lattice Gas 445
    13.7 Topological Phase Transitions 446
    13.7.1 Vortices 447
    13.7.2 XY-Model 448
    13.8 Kondo Effect 452
    13.8.1 sd-Interaction 453
    13.8.2 Spin-flip Scattering 454
    13.8.3 Kondo Resonance 456
    13.9 Hubbard Model 458
    13.9.1 U = 0 Solution 459
    13.9.2 Atomic Limit 460
    13.9.3 U > 0 460
    13.9.4 Half-filling 462
    Chapter 14: Superconductivity 467
    14.1 Discovery of Superconductivity 467
    14.1.1 Zero resistance 467
    14.1.2 Meissner Effect 468
    14.1.3 Three Eras of Superconductivity 469
    14.2 Theories of Superconductivity 473
    14.2.1 London Equation 473
    14.2.2 Ginzburg-Landau Theory 475
    14.2.3 Type II 478
    14.3 BCS Theory 479
    14.3.1 History of Theory 479
    14.3.2 Effective Hamiltonian 480
    14.3.3 Pairing States 481
    14.3.4 Gap Equation 483
    14.3.5 d-Wave Energy Gaps 486
    14.3.6 Density of States 487
    14.3.7 Ultrasonic Attenuation 489
    14.3.8 Meissner Effect 490
    14.4 Electron Tunneling 492
    14.4.1 Normal-Superconductor 494
    14.4.2 Superconductor-Superconductor 497
    14.4.3 Josephson Tunneling 498
    14.4.4 Andreev Tunneling 501
    14.4.5 Corner Junctions 502
    14.5 Cuprate Superconductors 503
    14.5.1 Muon Rotation 503
    14.5.2 Magnetic Oscillations 506
    14.6 Flux Quantization 507
    Chapter 15: Nanometer Physics 511
    15.1 Quantum Wells 512
    15.1.1 Lattice Matching 512
    15.1.2 Electron States 513
    15.1.3 Excitons and Donors in Quantum Wells 515
    15.1.4 Modulation Doping 518
    15.1.5 Electron Mobility 520
    15.2 Graphene 520
    15.2.1 Structure 521
    15.2.2 Electron Energy Bands 522
    15.2.3 Eigenvectors 525
    15.2.4 Landau Levels 525
    15.2.5 Electron-Phonon Interaction 526
    15.2.6 Phonons 528
    15.3 Carbon Nanotubes 530
    15.3.1 Chirality 530
    15.3.2 Electronic States 531
    15.3.3 Phonons in Carbon Nanotubes 536
    15.3.4 Electrical Resistivity 537
    Appendix 541
    Index 553
  • 사용후기

    사용후기가 없습니다.

  • 배송/교환정보

    배송정보

    배송 안내 입력전입니다.

    교환/반품

    교환/반품 안내 입력전입니다.

선택하신 도서가 장바구니에 담겼습니다.

계속 둘러보기 장바구니보기
회사소개 개인정보 이용약관
Copyright © 2001-2019 도서출판 홍릉. All Rights Reserved.
상단으로