본문 바로가기
장바구니0

Learning Predictive Analytics with Python > PACKT 원서리스트

도서간략정보

Learning Predictive Analytics with Python
판매가격 37,000원
저자 Kumar
도서종류 외국도서
출판사 PACKT
발행언어 영어
발행일 2016-02
페이지수 354
ISBN 9781783983261
도서구매안내 온, 오프라인 서점에서 구매 하실 수 있습니다.

구매기능

  • 도서 정보

    도서 상세설명

    1: Getting Started with Predictive Modelling
    Introducing predictive modelling
    Applications and examples of predictive modelling
    Python and its packages download and installation
    Python and its packages for predictive modelling
    IDEs for Python
    Summary

    2: Data Cleaning
    Reading the data variations and examples
    Various methods of importing data in Python
    The read_csv method
    Use cases of the read_csv method
    Case 2 reading a dataset using the open method of Python
    Case 3 reading data from a URL
    Case 4 miscellaneous cases
    Basics summary, dimensions, and structure
    Handling missing values
    Creating dummy variables
    Visualizing a dataset by basic plotting
    Summary

    3: Data Wrangling
    Subsetting a dataset
    Generating random numbers and their usage
    Grouping the data aggregation, filtering, and transformation
    Random sampling splitting a dataset in training and testing datasets
    Concatenating and appending data
    Merging/joining datasets
    Summary

    4: Statistical Concepts for Predictive Modelling
    Random sampling and the central limit theorem
    Hypothesis testing
    Chi-square tests
    Correlation
    Summary

    5: Linear Regression with Python
    Understanding the maths behind linear regression
    Making sense of result parameters
    Implementing linear regression with Python
    Model validation
    Handling other issues in linear regression
    Summary

    6: Logistic Regression with Python
    Linear regression versus logistic regression
    Understanding the math behind logistic regression
    Implementing logistic regression with Python
    Model validation and evaluation
    Model validation
    Summary

    7: Clustering with Python
    Introduction to clustering what, why, and how?
    Mathematics behind clustering
    Implementing clustering using Python
    Fine-tuning the clustering
    Summary

    8: Trees and Random Forests with Python
    Introducing decision trees
    Understanding the mathematics behind decision trees
    Implementing a decision tree with scikit-learn
    Understanding and implementing regression trees
    Understanding and implementing random forests
    Summary

    9: Best Practices for Predictive Modelling
    Best practices for coding
    Best practices for data handling
    Best practices for algorithms
    Best practices for statistics
    Best practices for business contexts
    Summary

    Appendix A: A List of Links
    Appendix B: Index
  • 사용후기

    사용후기가 없습니다.

  • 배송/교환정보

    배송정보

    배송 안내 입력전입니다.

    교환/반품

    교환/반품 안내 입력전입니다.

선택하신 도서가 장바구니에 담겼습니다.

계속 둘러보기 장바구니보기
회사소개 개인정보 이용약관
Copyright © 2001-2019 도서출판 홍릉. All Rights Reserved.
상단으로