본문 바로가기
장바구니0

Mastering Machine Learning with scikit-learn > PACKT 원서리스트

도서간략정보

Mastering Machine Learning with scikit-learn
판매가격 23,000원
저자 Hacjeling
도서종류 외국도서
출판사 PACKT
발행언어 영어
발행일 2014
페이지수 238
ISBN 9781783988365
도서구매안내 온, 오프라인 서점에서 구매 하실 수 있습니다.

구매기능

  • 도서 정보

    도서 상세설명

    1: The Fundamentals of Machine Learning
    Learning from experience
    Machine learning tasks
    Training data and test data
    Performance measures, bias, and variance
    An introduction to scikit-learn
    Installing scikit-learn
    Installing pandas and matplotlib
    Summary

    2: Linear Regression
    Simple linear regression
    Evaluating the model
    Multiple linear regression
    Polynomial regression
    Regularization
    Applying linear regression
    Fitting models with gradient descent
    Summary

    3: Feature Extraction and Preprocessing
    Extracting features from categorical variables
    Extracting features from text
    Extracting features from images
    Data standardization
    Summary

    4: From Linear Regression to Logistic Regression
    Binary classification with logistic regression
    Spam filtering
    Binary classification performance metrics
    Calculating the F1 measure
    ROC AUC
    Tuning models with grid search
    Multi-class classification
    Multi-label classification and problem transformation
    Summary

    5: Nonlinear Classification and Regression with Decision Trees
    Decision trees
    Training decision trees
    Decision trees with scikit-learn
    Summary

    6: Clustering with K-Means
    Clustering with the K-Means algorithm
    Evaluating clusters
    Image quantization
    Clustering to learn features
    Summary

    7: Dimensionality Reduction with PCA
    An overview of PCA
    Performing Principal Component Analysis
    Using PCA to visualize high-dimensional data
    Face recognition with PCA
    Summary

    8: The Perceptron
    Activation functions
    Binary classification with the perceptron
    Limitations of the perceptron
    Summary

    9: From the Perceptron to Support Vector Machines
    Kernels and the kernel trick
    Maximum margin classification and support vectors
    Classifying characters in scikit-learn
    Summary

    10: From the Perceptron to Artificial Neural Networks
    Nonlinear decision boundaries
    Feedforward and feedback artificial neural networks
    Approximating XOR with Multilayer perceptrons
    Classifying handwritten digits
    Summary

    Appendix A: Index
  • 사용후기

    사용후기가 없습니다.

  • 배송/교환정보

    배송정보

    배송 안내 입력전입니다.

    교환/반품

    교환/반품 안내 입력전입니다.

선택하신 도서가 장바구니에 담겼습니다.

계속 둘러보기 장바구니보기
회사소개 개인정보 이용약관
Copyright © 2001-2019 도서출판 홍릉. All Rights Reserved.
상단으로