본문 바로가기
장바구니0

Audio Source Separation and Speech Enhancement > 음향

도서간략정보

Audio Source Separation and Speech Enhancement
판매가격 65,000원
저자 Emmanuel Vincent
도서종류 외국도서
출판사 Wiley-Blackwell
발행언어 영어
발행일 2018-10
페이지수 504
ISBN 9781119279891
도서구매안내 온, 오프라인 서점에서 구매 하실 수 있습니다.

구매기능

  • 도서 정보

    도서 상세설명

    List of Authors xvii

    Preface xxi

    Acknowledgment xxiii

    Notations xxv

    Acronyms xxix

    About the Companion Website xxxi

    Part I Prerequisites 1

    1 Introduction 3
    Emmanuel Vincent, Sharon Gannot, and Tuomas Virtanen

    1.1 Why are Source Separation and Speech Enhancement Needed? 3

    1.2 What are the Goals of Source Separation and Speech Enhancement? 4

    1.3 How can Source Separation and Speech Enhancement be Addressed? 9

    1.4 Outline 11

    Bibliography 12

    2 Time-Frequency Processing: Spectral Properties 15
    Tuomas Virtanen, Emmanuel Vincent, and Sharon Gannot

    2.1 Time-Frequency Analysis and Synthesis 15

    2.2 Source Properties in the Time-Frequency Domain 23

    2.3 Filtering in the Time-Frequency Domain 25

    2.4 Summary 28

    Bibliography 28

    3 Acoustics: Spatial Properties 31
    Emmanuel Vincent, Sharon Gannot, and Tuomas Virtanen

    3.1 Formalization of the Mixing Process 31

    3.2 Microphone Recordings 32

    3.3 Artificial Mixtures 36

    3.4 Impulse Response Models 37

    3.5 Summary 43

    Bibliography 43

    4 Multichannel Source Activity Detection, Localization, and Tracking 47
    Pasi Pertilä, Alessio Brutti, Piergiorgio Svaizer, and Maurizio Omologo

    4.1 Basic Notions in Multichannel Spatial Audio 47

    4.2 Multi-Microphone Source Activity Detection 52

    4.3 Source Localization 54

    4.4 Summary 60

    Bibliography 60

    Part II Single-Channel Separation and Enhancement 65

    5 Spectral Masking and Filtering 67
    Timo Gerkmann and Emmanuel Vincent

    5.1 Time-Frequency Masking 67

    5.2 Mask Estimation Given the Signal Statistics 70

    5.3 Perceptual Improvements 81

    5.4 Summary 82

    Bibliography 83

    6 Single-Channel Speech Presence Probability Estimation and Noise Tracking 87
    Rainer Martin and Israel Cohen

    6.1 Speech Presence Probability and its Estimation 87

    6.2 Noise Power Spectrum Tracking 93

    6.3 Evaluation Measures 102

    6.4 Summary 104

    Bibliography 104

    7 Single-Channel Classification and Clustering Approaches 107
    FelixWeninger, Jun Du, Erik Marchi, and Tian Gao

    7.1 Source Separation by Computational Auditory Scene Analysis 108

    7.2 Source Separation by Factorial HMMs 111

    7.3 Separation Based Training 113

    7.4 Summary 125

    Bibliography 125

    8 Nonnegative Matrix Factorization 131
    Roland Badeau and Tuomas Virtanen

    8.1 NMF and Source Separation 131

    8.2 NMF Theory and Algorithms 137

    8.3 NMF Dictionary LearningMethods 145

    8.4 Advanced NMF Models 148

    8.5 Summary 156

    Bibliography 156

    9 Temporal Extensions of Nonnegative Matrix Factorization 161
    Cédric Févotte, Paris Smaragdis, NasserMohammadiha, and Gautham J.Mysore

    9.1 Convolutive NMF 161

    9.2 Overview of DynamicalModels 169

    9.3 Smooth NMF 170

    9.4 Nonnegative State-Space Models 174

    9.5 Discrete DynamicalModels 178

    9.6 The Use of DynamicModels in Source Separation 182

    9.7 Which Model to Use? 183

    9.8 Summary 184

    9.9 Standard Distributions 184

    Bibliography 185

    Part III Multichannel Separation and Enhancement 189

    10 Spatial Filtering 191
    Shmulik Markovich-Golan,Walter Kellermann, and Sharon Gannot

    10.1 Fundamentals of Array Processing 192

    10.2 Array Topologies 197

    10.3 Data-Independent Beamforming 199

    10.4 Data-Dependent Spatial Filters: Design Criteria 202

    10.5 Generalized Sidelobe Canceler Implementation 209

    10.6 Postfilters 210

    10.7 Summary 211

    Bibliography 212

    11 Multichannel Parameter Estimation 219
    Shmulik Markovich-Golan,Walter Kellermann, and Sharon Gannot

    11.1 Multichannel Speech Presence Probability Estimators 219

    11.2 Covariance Matrix Estimators Exploiting SPP 227

    11.3 Methods forWeakly Guided and Strongly Guided RTF Estimation 228

    11.4 Summary 231

    Bibliography 231

    12 Multichannel Clustering and Classification Approaches 235
    Michael I.Mandel, Shoko Araki, and Tomohiro Nakatani

    12.1 Two-Channel Clustering 236

    12.2 Multichannel Clustering 244

    12.3 Multichannel Classification 251

    12.4 Spatial Filtering Based on Masks 255

    12.5 Summary 257

    Bibliography 258

    13 Independent Component and Vector Analysis 263
    Hiroshi Sawada and Zbynˇek Koldovský

    13.1 Convolutive Mixtures and their Time-Frequency Representations 264

    13.2 Frequency-Domain Independent Component Analysis 265

    13.3 Independent Vector Analysis 279

    13.4 Example 280

    13.5 Summary 284

    Bibliography 284

    14 Gaussian Model Based Multichannel Separation 289
    Alexey Ozerov and Hirokazu Kameoka

    14.1 Gaussian Modeling 289

    14.2 Library of Spectral and SpatialModels 295

    14.3 Parameter Estimation Criteria and Algorithms 300

    14.4 Detailed Presentation of Some Methods 305

    14.5 Summary 312

    Acknowledgment 312

    Bibliography 312

    15 Dereverberation 317
    Emanuël A.P. Habets and Patrick A. Naylor

    15.1 Introduction to Dereverberation 317

    15.2 Reverberation Cancellation Approaches 319

    15.3 Reverberation Suppression Approaches 329

    15.4 Direct Estimation 335

    15.5 Evaluation of Dereverberation 336

    15.6 Summary 337

    Bibliography 337

    Part IV Application Scenarios and Perspectives 345

    16 Applying Source Separation to Music 347
    Bryan Pardo, Antoine Liutkus, Zhiyao Duan, and Gaël Richard

    16.1 Challenges and Opportunities 348

    16.2 Nonnegative Matrix Factorization in the Case of Music 349

    16.3 Taking Advantage of the Harmonic Structure of Music 354

    16.4 Nonparametric Local Models: Taking Advantage of Redundancies in Music 358

    16.5 Taking Advantage of Multiple Instances 363

    16.6 Interactive Source Separation 367

    16.7 Crowd-Based Evaluation 367

    16.8 Some Examples of Applications 368

    16.9 Summary 370

    Bibliography 370

    17 Application of Source Separation to Robust Speech Analysis and Recognition 377
    ShinjiWatanabe, Tuomas Virtanen, and Dorothea Kolossa

    17.1 Challenges and Opportunities 377

    17.2 Applications 380

    17.3 Robust Speech Analysis and Recognition 390

    17.4 Integration of Front-End and Back-End 397

    17.5 Use of Multimodal Information with Source Separation 403

    17.6 Summary 404

    Bibliography 405

    18 Binaural Speech Processing with Application to Hearing Devices 413
    Simon Doclo, Sharon Gannot, Daniel Marquardt, and Elior Hadad

    18.1 Introduction to Binaural Processing 413

    18.2 Binaural Hearing 415

    18.3 Binaural Noise Reduction Paradigms 416

    18.4 The Binaural Noise Reduction Problem 420

    18.5 Extensions for Diffuse Noise 425

    18.6 Extensions for Interfering Sources 431

    18.7 Summary 437

    Bibliography 437

    19 Perspectives 443
    Emmanuel Vincent, Tuomas Virtanen, and Sharon Gannot

    19.1 Advancing Deep Learning 443

    19.2 Exploiting Phase Relationships 447

    19.3 AdvancingMultichannel Processing 450

    19.4 Addressing Multiple-Device Scenarios 453

    19.5 TowardsWidespread Commercial Use 455

    Acknowledgment 457

    Bibliography 457

    Index 465
  • 사용후기

    사용후기가 없습니다.

  • 배송/교환정보

    배송정보

    배송 안내 입력전입니다.

    교환/반품

    교환/반품 안내 입력전입니다.

선택하신 도서가 장바구니에 담겼습니다.

계속 둘러보기 장바구니보기
회사소개 개인정보 이용약관
Copyright © 2001-2019 도서출판 홍릉. All Rights Reserved.
상단으로