본문 바로가기
장바구니0

Table of Integrals, Series, and Products, 7/Ed > 수학/통계학

도서간략정보

Table of Integrals, Series, and Products, 7/Ed
판매가격 69,000원
저자 Jeffrey
도서종류 외국도서
출판사 Elsevier
발행언어 영어
발행일 2007-03-09
페이지수 1200
ISBN 9780123736376
도서구매안내 온, 오프라인 서점에서 구매 하실 수 있습니다.

구매기능

  • 도서 정보

    도서 상세설명

    Preface to the Sixth Edition xxi
    Acknowledgments xxiii
    The order of presentation of the formulas xxvii
    Use of the tables xxxi
    Special functions xxxix
    Notation xliii
    Note on the bibliographic references xlvii
    0 Introduction 1
    0.1 Finite sums 1
    0.2 Numerical series and infinite products 6
    0.3 Functional series 15
    0.4 Certain formulas from differential calculus 21
    1 Elementary Functions 25
    1.1 Power of Binomials 25
    1.2 The Exponential Function 26
    1.3-1.4 Trigonometric and Hyperbolic Functions 27
    1.5 The Logarithm 51
    1.6 The Inverse Trigonometric and Hyperbolic Functions 54
    2 Indefinite Integrals of Elementary Functions 61
    2.0 Introduction 61
    2.1 Rational functions 64
    2.2 Algebraic functions 80
    2.3 The Exponential Function 104
    2.4 Hyperbolic Functions 105
    2.5-2.6 Trigonometric Functions 147
    2.7 Logarithms and Inverse-Hyperbolic Functions 233
    2.8 Inverse Trigonometric Functions 237
    3-4 Definite Integrals of Elementary Functions 243
    3.0 Introduction 243
    3.1-3.2 Power and Algebraic Functions 248
    3.3-3.4 Exponential Functions 331
    3.5 Hyperbolic Functions 365
    3.6-4.1 Trigonometric Functions 384
    4.2-4.4 Logarithmic Functions 522
    4.5 Inverse Trigonometric Functions 596
    4.6 Multiple Integrals 604
    5 Indefinite Integrals of Special Functions 615
    5.1 Elliptic Integrals and Functions 615
    5.2 The Exponential Integral Function 622
    5.3 The Sine Integral and the Cosine Integral 623
    5.4 The Probability Integral and Fresnel Integrals 623
    5.5 Bessel Functions 624
    6-7 Definite Integrals of Special Functions 625
    6.1 Elliptic Integrals and Functions 625
    6.2-6.3 The Exponential Integral Function and Functions Generated by It 630
    6.4 The Gamma Function and Functions Generated by It 644
    6.5-6.7 Bessel Functions 652
    6.8 Functions Generated by Bessel Functions 745
    6.9 Mathieu Functions 755
    7.1-7.2 Associated Legendre Functions 762
    7.3-7.4 Orthogonal Polynomials 788
    7.5 Hypergeometric Functions 806
    7.6 Confluent Hypergeometric Functions 814
    7.7 Parabolic Cylinder Functions 835
    7.8 Meijer\'s and MacRobert\'s Functions (G and E) 843
    8-9 Special Functions 851
    8.1 Elliptic integrals and functions 851
    8.2 The Exponential Integral Function and Functions Generated by It 875
    8.3 Euler\'s Integrals of the First and Second Kinds 883
    8.4-8.5 Bessel Functions and Functions Associated with Them 900
    8.6 Mathieu Functions 940
    8.7-8.8 Associated Legendre Functions 948
    8.9 Orthogonal Polynomials 972
    9.1 Hypergeometric Functions 995
    9.2 Confluent Hypergeometric Functions 1012
    9.3 Meijer\'s G-Function 1022
    9.4 MacRobert\'s E-Function 1025
    9.5 Riemann\'s Zeta Functions [zeta] (z, q), and [zeta] (z), and the Functions [Phi] (z, s, v) and [xi] (s) 1026
    9.6 Bernoulli numbers and polynomials, Euler numbers 1030
    9.7 Constants 1035
    10 Vector Field Theory 1039
    10.1-10.8 Vectors, Vector Operators, and Integral Theorems 1039
    11 Algebraic Inequalities 1049
    11.1-11.3 General Algebraic Inequalities 1049
    12 Integral Inequalities 1053
    12.11 Mean value theorems 1053
    12.21 Differentiation of definite integral containing a parameter 1054
    12.31 Integral inequalities 1054
    12.41 Convexity and Jensen\'s inequality 1056
    12.51 Fourier series and related inequalities 1056
    13 Matrices and related results 1059
    13.11-13.12 Special matrices 1059
    13.21 Quadratic forms 1061
    13.31 Differentiation of matrices 1063
    13.41 The matrix exponential 1064
    14 Determinants 1065
    14.11 Expansion of second- and third-order determinants 1065
    14.12 Basic properties 1065
    14.13 Minors and cofactors of a determinant 1065
    14.14 Principal minors 1066
    14.15 Laplace expansion of a determinant 1066
    14.16 Jacobi\'s theorem 1066
    14.17 Hadamard\'s theorem 1066
    14.18 Hadamard\'s inequality 1067
    14.21 Cramer\'s rule 1067
    14.31 Some special determinants 1068
    15 Norms 1071
    15.1-15.9 Vector Norms 1071
    15.11 General properties 1071
    15.21 Principal vector norms 1071
    15.31 Matrix norms 1072
    15.41 Principal natural norms 1072
    15.51 Spectral radius of a square matrix 1073
    15.61 Inequalities involving eigenvalues of matrices 1074
    15.71 Inequalities for the characteristic polynomial 1074
    15.81-15.82 Named theorems on eigenvalues 1076
    15.91 Variational principles 1081
    16 Ordinary differential equations 1083
    16.1-16.9 Results relating to the solution of ordinary differential equations 1083
    16.11 First-order equations 1083
    16.21 Fundamental inequalities and related results 1084
    16.31 First-order systems 1085
    16.41 Some special types of elementary differential equations 1087
    16.51 Second-order equations 1088
    16.61-16.62 Oscillation and non-oscillation theorems for second-order equations 1090
    16.71 Two related comparison theorems 1093
    16.81-16.82 Non-oscillatory solutions 1093
    16.91 Some growth estimates for solutions of second-order equations 1094
    16.92 Boundedness theorems 1096
    17 Fourier, Laplace, and Mellin Transforms 1099
    17.1-17.4 Integral Transforms 1099
    18 The z-transform 1127
    18.1-18.3 Definition, Bilateral, and Unilateral z-Transforms 1127
    References 1133
    Supplemental references 1137
    Function and constant index 1143
    General index 1153
  • 사용후기

    사용후기가 없습니다.

  • 배송/교환정보

    배송정보

    배송 안내 입력전입니다.

    교환/반품

    교환/반품 안내 입력전입니다.

선택하신 도서가 장바구니에 담겼습니다.

계속 둘러보기 장바구니보기
회사소개 개인정보 이용약관
Copyright © 2001-2019 도서출판 홍릉. All Rights Reserved.
상단으로